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One of the principal challenges in epidemiological modeling is to
parameterize models with realistic estimates for transmission rates
in order to analyze strategies for control and to predict disease
outcomes. Using a combination of replicated experiments, Bayes-
ian statistical inference, and stochastic modeling, we introduce and
illustrate a strategy to estimate transmission parameters for the
spread of infection through a two-phase mosaic, comprising fa-
vorable and unfavorable hosts. We focus on epidemics with local
dispersal and formulate a spatially explicit, stochastic set of transition
probabilities using a percolation paradigm for a susceptible–
infected (S–I) epidemiological model. The S–I percolation model is
further generalized to allow for multiple sources of infection
including external inoculum and host-to-host infection. We fit the
model using Bayesian inference and Markov chain Monte Carlo
simulation to successive snapshots of damping-off disease spread-
ing through replicated plant populations that differ in relative
proportions of favorable and unfavorable hosts and with time-
varying rates of transmission. Epidemiologically plausible para-
metric forms for these transmission rates are compared by using
the deviance information criterion. Our results show that there are
four transmission rates for a two-phase system, corresponding to
each combination of infected donor and susceptible recipient.
Knowing the number and magnitudes of the transmission rates
allows the dominant pathways for transmission in a heteroge-
neous population to be identified. Finally, we show how failure to
allow for multiple transmission rates can overestimate or under-
estimate the rate of spread of epidemics in heterogeneous envi-
ronments, which could lead to marked failure or inefficiency of
control strategies.

Bayesian inference � crop mixture � susceptible–infected (S–I) epidemic �
spatially structured host populations � Markov chain Monte Carlo

One of the principal challenges in epidemiological modeling
is to parameterize models with realistic estimates for trans-

mission rates in order to analyze strategies for control and to
predict disease outcomes. Although the durations of infectious
and latent periods often can be estimated from observation of
individuals challenged with inoculum, the probabilities and the
associated rates for transmission of infection between infected
and susceptible individuals are notoriously difficult to measure
or estimate (1, 2). The problem is especially acute in spatially
structured, heterogeneous host populations, in which hosts differ
in susceptibility and infectivity. The magnitudes of the trans-
mission rates typically change over space, according to the nature
of the infected donor and the susceptible recipient, and also may
change over time (2). In human diseases, infectivity and suscep-
tibility may be affected by genetic, physiological, or social
differences (3–5) as well as by immune and vaccination history.
Examples also occur in animal epidemiology, with transmission
of infection of a common pathogen within and between species
at the landscape scale, such as foot and mouth disease in sheep
and cattle (6) or in prophylactic treatment of some herds or
animals but not others. Analogous examples occur at two scales
in cropping systems, either as mixtures of crop species within

fields (7, 8) (where the plant is the unit of epidemiological
interest) or as a mosaic of crops, such as wheat and barley with
differing susceptibility to a common pathogen, arranged within
a landscape (where the field is the unit of epidemiological
interest) (9, 10).

It is now widely acknowledged that host heterogeneity can
endow systems with a far more complex range of dynamics,
relating to species and population persistence (9, 11, 12) or
evolutionary processes (13), than would be exhibited in homo-
geneous settings. Even for a two-phase system, there may be as
many as four distinct rates arising from each combination of
transmission between donor (infected) and recipient (suscepti-
ble) individual, and as few as one, if hosts respond homoge-
neously to infection. Together with the spatial distribution or
network structure of favorable and unfavorable hosts in the
population, multiple transmission rates determine the spatial
and temporal evolution of the epidemic in ways that are quite
different from homogeneous transmission. Preferential spread
on one component, for example, changes the evolution of the
contact structure between infected and susceptible sites during
the course of the epidemic (Fig. 1). To be able to predict such
behavior depends on being able to discriminate differences in
transmission rates. Using a combination of replicated experi-
ments, statistical estimation, and stochastic modeling, we show
below how failure to account for heterogeneity in transmission
rates by assuming a common (average) transmission rate can
seriously misinterpret the dynamics of the epidemic.

Specifically, we consider spatially heterogeneous epidemic
systems in which pathogen spread occurs through a landscape
comprising favorable sites (such as a susceptible or untreated
host) and less favorable sites (such as partially resistant or
treated hosts). We focus on processes and models with a strong
network structure with short-range interactions. We develop an
innovative statistical methodology for the estimation of trans-
mission parameters for a stochastic model of epidemics in
heterogeneous populations and test it on successive spatial maps
of epidemics from replicated microcosms of mixed populations
of radish and mustard seedlings (henceforth labeled favorable,
F, and unfavorable, U, respectively) exposed to the fungal plant
pathogen Rhizoctonia solani Kühn. Soil-borne pathogens are
important determinants in the dynamics of plant populations in
natural environments (14) and in epidemics in agricultural
environments (9, 13). The model is formulated as a stochastic,
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spatially explicit set of transition probabilities using a percolation
paradigm for a susceptible–infected (S–I) epidemiological
model that previously has been shown to be appropriate for
epidemics with short-range, nearest-neighbor contacts on a
lattice (15, 16). The S–I percolation model is generalized to allow
for multiple sources of infection, including primary (from ex-
ternal inoculum) and secondary (host-to-host) infection. In
common with many real-life systems such as measles (17), the
infection process is subject to temporal forcing, which is ac-
counted for by differential time-varying rates of infection as the
two species become resistant to damping-off disease (see Meth-
ods). Parameter estimation is effected by fitting the model to
observations of disease spread through time and space in
replicated epidemics using a combination of Bayesian inference
and Markov chain Monte Carlo simulation, adapted from Gib-
son et al. (2).

Our specific objectives are:

Y to develop methods to fit percolation-based, spatiotemporal
models for the spread of epidemics that evolve in heteroge-
neous environments with local dispersal and time-varying
transmission rates within and between species;

Y to demonstrate methods for formal comparison of models and
to test for significant differences among transmission rates;

Y to use parameter estimates to analyze and predict the effects
of different degrees of spatial heterogeneity on disease dy-
namics; and

Y to assess whether temporal forcing of transmission rates can be
detected with the infrequent sampling typical of large-scale
natural systems.

We also address the effect of large-scale (typified by the per-
centage of area covered by favorable sites) and small-scale
(typified by the degree of clustering of favorable sites) hetero-
geneity on the connectivity within and between favorable and
unfavorable sites, and how connectivity and transmission rates
determine disease levels by controlling the way an epidemic
invades its environment.

Results
We first identified the parametric forms for time-varying trans-
mission rates (see Methods) from which we conclude that the rate
of primary infection declines exponentially with time and the
rate of secondary infection rises and falls over time, described by

a three-parameter Weibull function. The nuisance parameter
used to account for so-called tertiary infection arising from the
occasional non-nearest-neighbor transmission was constant
throughout the epidemics. Models were compared using the
deviance information criterion (DIC) [see Methods and support-
ing information (SI) Appendix]. Although the particular form of
time-dependency for the transmission rates (Fig. 2) reflects the
characteristics of the specific system we used to test our method,
the methodology introduced below to estimate multiple trans-
mission rates can easily be generalized to any epidemic with or
without temporal forcing (see Discussion).

Model Fitting and Comparison of Transmission Rates. Bayesian meth-
ods were used to estimate parameters and to compare transmis-
sion rates for the fully parameterized, spatially explicit, stochastic
model for time-varying primary and secondary infection rates.
We show that not only was there no evidence to support a
common rate among and between species but also that the rates
of secondary infection differed according to which species was
the donor and which the recipient (Table 1, Fig. 2). It follows that
there are two transmission rates for primary infection, one per

Fig. 1. Dynamics of infection in a heterogeneous host population compris-
ing unfavorable (U, gray squares) and favorable (F, white squares) sites. The
state of an epidemic is shown for two time points, with solid circles indicating
infected hosts and empty circles indicating susceptible hosts. The arrows
represent potential transmission routes between infected and neighboring
susceptible sites. The figure shows how the localized conditions change with
time and how the disease load depends on the relative strength of each of the
four possible transmission rates �[., .]. (Left) Total infective challenge on F is
4�[F, F] and 3�[F, U] on U. (Right) As more hosts become infected, this
challenge changes to 3�[F, F] � �[U, F] on F and 2�[F, U] � 2�[U, U] on U. Even
though the number of transmission pathways has increased from seven to
eight, the combined effective challenge may be greater or less than in Left,
depending on the relative strength of each of the four transmission rates.
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Fig. 2. Posterior means (solid curves) and 95% credible intervals (dashed
curves) for primary [�[F](t) and �[U](t)] and each of the four secondary
[�[FF](t), �[FU](t), �[UF](t), and �[UU](t)] transmission rates against time.
Results using the full spatiotemporal data are shown in black (with observa-
tions at times indicated by black circles in the lower right plot), and the
corresponding results, with all but three observations at times 4, 8, and 12
discarded, are shown in gray.

Table 1. Difference in deviance information criteria (DIC) relative
to the best-fitting model, used to confirm absence of common
parameters for secondary transmission rates, associated with
the donor, the recipient, or both

Model DIC p̂

Full 0 21.0
Donors same ��FF� � ��UF�; ��FU� � ��UU� 25 15.7
Recipients same ��FF� � ��FU�; ��UF� � ��UU� 482 11.5
Cross same ��FU� � ��UF� 50 17.3
All rates same ��FF� � ��FU� � ��UF� � ��UU� 921 7.4

The estimated effective number of parameters is denoted p̂. For brevity, the
time dependence of � is omitted.
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host species, but that the differential transmission of secondary
infection needs to be explained by four distinct rates, depending
on which species is the donor and which the recipient. The full
joint posterior distribution is used to calculate the rates shown
in Fig. 2. The corresponding point estimates for parameters
together with 95% credible intervals are given in SI Table 3. Both
parameters governing primary infection differed between spe-
cies (Pr(aU � aF  data) � 0.0001, Pr(rU � rF  data) � 0.01).
Because both species were challenged by the same source of
inoculum, these differences indicate that although the unfavor-
able (mustard) sites were initially more susceptible to inoculum,
they became resistant more quickly than the favorable (radish)
sites (Fig. 2). Interpretation of the various parameters for
secondary infection is more complicated, because each set of
three parameters contributes jointly to the shape of the second-
ary transmission rate (Fig. 2). All four within- and between-
species transmission rates displayed similar temporal dynamics:
the rate of transmission initially increased, followed by a de-
crease. The absolute values were, however, significantly different
for all four transmission rates (Fig. 2, Table 1).

The largest of the secondary transmission rates unsurprisingly
occurred between two favorable sites, followed by the transmis-
sion of infection from unfavorable to favorable sites. The rate at
which unfavorable sites became infected was lower, in particular
for transmission between two unfavorable sites. Overall, how-
ever, there were appreciable rates for between-species (UF, FU)
transmission of infection with differing magnitudes that could
not have been predicted from the within-species (UU, FF) rates
(compare Fig. 2).

We plot the predicted and measured daily distribution of new
infections as a measure of goodness-of-fit (Fig. 3). It is striking
that with a single set of parameters, the prediction of the number
of new infections for each day agrees well with the measured data
for all population structures, representing a wide range of
heterogeneity. Although the predicted distributions follow the
central trend of the observations, the amount of variability in the
number of new infections is underestimated, with more obser-
vations falling outside the credible bounds than would be
expected. This extra variability may indicate environmental
differences between replicates that we have not modeled and
which in principle could be remedied by taking a hierarchical
Bayesian approach (e.g., refs. 18 and 19).

Sensitivity of Results to Frequency of Observations. To assess
whether or not the temporal change in transmission rates could
still have been identified with less intensive sampling, we discard
some of the data and repeat the model fitting routine. The
inferred posterior mean and 95% credible intervals for the
transmission rates, taking observations to be at times 4, 8, and
12 rather than daily until day 13, are plotted in Fig. 2 in gray. The
correspondence between the analyses based on the full and
reduced data sets is remarkably close. The increase in the
variability of the estimates from the reduced data set is small
compared with the putative decrease in sampling costs.

Identification of Dominant Pathways for Transmission of Infection.
Estimation of the set of transmission rates for an epidemic in a
heterogeneous population of hosts allows us to identify the
dominant pathways for infection on which future efforts to
control and manage disease should be targeted. We derive the
following posterior distributions: the number of hosts in a mixed
population that became infected by primary infection and by
infection via secondary infection from the same species or class
(e.g., favorable–favorable or unfavorable–unfavorable) and be-
tween species (e.g., favorable–unfavorable or unfavorable–
favorable) (Table 2). In heterogeneous populations, a popula-
tion with 75% favorable sites (Fig. 4a) provides a well connected
network of neighboring favorable sites that is preferentially
exploited by the epidemic. Unfavorable sites become infected
predominantly from neighboring favorable sites and contribute
little to transmission of infection. In contrast, for a population
with 50% favorable sites (Fig. 4d), the connectivity of the
favorable network is reduced and the contribution of unfavor-
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Fig. 3. Posterior predictive new infections of daily increments (shaded
region corresponds to credible intervals) with observations (points, area of
symbols are proportional to the number of observations) for damping-off
epidemics in mixed populations comprising 100%, 75%, 50%, or 0% favorable
hosts. Predictions take the form of mixture distributions with each component
conditional on the previous spatial observation of disease presence in an
experimental replicate. Predictions take account of both parametric uncer-
tainty and population stochasticity. IF(t) and IU(t) denote the number of
infected favorable and unfavorable hosts at time t, respectively.

Table 2. Identification of the most likely pathways and sources of transmission of infection in mixed populations, estimated by
fitting the model to replicated epidemics of mixed populations with different ratios of favorable (F) and unfavorable (U) plants

Species

100% F 75% F 50% F 100% U

F F U F U U

Primary infection 4.6 (0.2) 4.5 (0.3) 5.8 (0.3) 4.2 (0.3) 5.8 (0.2) 5.7 (0.2)
Secondary transmission from F 58.4 (0.5) 45.4 (0.7) 27.1 (0.9) 25.7 (0.7) 14.5 (0.6) —
Secondary transmission from U — 5.0 (0.5) 2.0 (0.5) 13.1 (0.6) 9.3 (0.5) 7.9 (0.3)

The values show the posterior mean (expressed as % of F or U present in the population) of plants that became infected by primary infection, secondary
infection from favorable plants, or secondary infection from an unfavorable plant. Tertiary infection accounted for the infection of a further 11–15% of favorable
and 4–5% of unfavorable plants. Standard deviations are given in parentheses.
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able sites to the spread of epidemics increased significantly
(Table 2). Only by fitting spatial models is it possible to obtain
estimates of the most likely pathways for transmission of infection.

The Effect of Heterogeneity in Population Structure. Model infer-
ences were used with the estimated parameters to analyze the
effect of heterogeneity at two spatial scales: at the large scale,
exemplified by the area of the population covered by favorable
sites, and at the small scale, exemplified by the clustering of
favorable sites within the population. The intuitive expectation
here is that an increase in the proportion or clustering of a
subpopulation through which disease spreads will lead to an
increase in infection as the number of contacts to the same host
type increases and a better connected network for transmission
of infection is formed (Fig. 4). The proportion of infected hosts
in the favorable subpopulation did indeed increase, irrespective
of transmission between subpopulations (Fig. 4 b and c). How-
ever, the combined effect of the four transmission rates for
secondary infection and the evolution of contacts between
favorable and unfavorable sites resulted in counterintuitive
responses in the unfavorable subpopulation. Here, an increase in
the proportion of the unfavorable population resulted in either
more or less infection, depending on the relative magnitude of
the transmission rates between the two subpopulations (Fig. 4e).
A similar dichotomous response resulted from reducing the
amount of local clustering (Fig. 4f ). We conclude that the effect
of a better connected network in the unfavorable subpopulation
is offset against a decrease in the number of contacts with the
favorable subpopulation within which disease can spread faster.
Additional simulations (data not shown) showed that this pattern
depends on neither the level of primary infection nor the
time-dependency of the transmission rates, but that it does
depend on the relative values of the transmission rates.

Discussion
Transmission rates for epidemics are notoriously difficult to
quantify (20) and resort is often made to indirect methods of
estimation. Our approach introduces and tests a framework for
direct estimation of transmission rates from spatiotemporal
snapshots of disease spread through heterogeneous populations.
By integrating experimentation, modeling, and parameter esti-
mation using Bayesian estimation coupled with Markov chain

Monte Carlo simulation, the framework allows identification and
analysis of the processes that underlie the spread of disease in
heterogeneous populations. We have shown that the following
are possible: (i) estimation of multiple transmission rates from
spatiotemporal data of disease in heterogeneous (two-phase)
environments, (ii) formal comparison of models and tests for
significant differences among transmission rates, (iii) identifica-
tion of the main sources and pathways of infection, and (iv)
analysis, using parameter estimates, of how epidemics evolve in
response to changes to the heterogeneity of their environment.
Although the framework was tested for a full data set of 13
successive spatiotemporal maps for which the observational time
scale was well matched to the biological time scale of the system,
we have also shown that the method is robust to drastic reduction
in the number (three) of snapshots. Small numbers of snapshots
are much more typical of epidemics in natural systems (21, 22),
and the robustness of the methods to these small samples
supports the generality of the statistical framework to nonmodel
systems.

Knowing the number and magnitude of transmission rates
enabled us to identify the dominant pathways for transmission of
infection (Fig. 4). Failure to allow for multiple transmission rates
could grossly underestimate or overestimate the rate of spread
of disease, especially in inferring the effects of changing the
proportion of favorable or unfavorable sites associated with
disease-control strategies in a population. For example, at the
landscape scale, we may consider vaccinating hosts spatially to
control diseases such as foot and mouth (23); the choice of
whether to vaccinate all susceptible animals or just cattle,
say—without prior knowledge of the resulting transmission rates
for the epidemic—could lead to marked failure or inefficiency
in prophylactic use.

We developed our methods for a generic model for epidemics
(9) where hosts are classified as either susceptible (S) or infected
(I) in order to illustrate the approach. Although the model does
not include any hidden classes, such as latent infections (1), extra
classes can, in principle, be accommodated. The model and
approach also readily generalize to multiple phases or host types.
If hj, the heterogeneity covariate of host j, remains categorical,
the extension is obvious, although the number of parameters
increases quadratically with the number of phases. If hj repre-
sents a continually varying trait, then some functional form (24)
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must be imposed for the rate �[hi, hs](t) of infection from i to s:
for example, that �[hi, hs](t) is proportional to hs and constant
with time (25).

The plant pathogen experimental microcosm system used here
is well suited to testing methodological advances (1, 2). It is
repeatable yet introduces stochasticity to replicated epidemics in
unpredictable ways that reflect well the uncertainty of biological
systems not always captured by computer simulation. Epidemics
are short, with completion in 15–20 days, and allow repeated
observations, usually at daily intervals, of evolving replicated
epidemics. Even in the model system, complexities arise. The
rates of primary infection decay exponentially with time; the rise
and fall in the rates of secondary infection are consistent with
changes in infectivity as plants grow and become stronger
donors, offset by increasing resistance as plants age (26). These
results are consistent with analyses of epidemics in analogous
homogeneous systems, and biological interpretations associated
with changing dynamics of host susceptibilities are detailed
elsewhere (26). The important feature to note here is that
time-dependency of transmission rates is often not known a
priori, yet it plays a crucial role in the dynamics of epidemics,
especially when it leads to rapid quenching of disease spread
(27). Our method enables formal comparison of models to
identify appropriate functions for time-dependency of transmis-
sion rates.

Time-varying infection rates are not limited to plant diseases.
Rates may change as a result of policy [e.g., culling of livestock
(28), the imposition of travel restrictions (29)], social reaction to
the threat of infections (29), environmental changes (30), or
seasonal variation (17). Host age (31) and viral load (32) can also
have an effect on transmissibility of infection. The detection of
changes depends on sufficient information being present in the
available data but does not depend as much on frequent
sampling as might be expected: repeating the analysis in this
article but omitting 75% of the observation times yields very
similar results (Fig. 2).

Although the focus of this article has been on crop mixtures,
marked differences in transmissibility of infection within and
among classes of hosts are also important determinants of the
outcome of disease outbreaks in human and other animal
populations. Typical examples include species differences in
transmission of the foot and mouth pathogen (28) and polymor-
phism and recombinational hotspots in susceptibility to malaria
(3). Sexual orientation, behavior, and partner choice impose
heterogeneities in relation to sexually transmitted diseases (4, 5)
as do age (4, 31) and sex (4, 33) for a range of other diseases.
Until now, it has been very difficult to parameterize models to
take account of such heterogeneities, despite their implicit
importance in the dissemination and control of disease, as for
example in the recent outbreak of severe acute respiratory
syndrome (29).

The main feature of the framework introduced here is that it
allows for analysis of epidemics in heterogeneous environments
while accounting for two crucial underlying aspects, namely, the
contact between sites in the population and real estimates of
multiple transmission rates that operate in heterogeneous sys-
tems. We have shown that both factors affect the dynamics of
epidemics and hence the effectiveness of disease-control strat-
egies. Such strategies could include spatially explicit control by
shielding susceptible hosts, fields, or even farms, for example, by
the spatial deployment of resistant varieties or a local deploy-
ment of a chemical or biological control agent (8, 10, 34). The
effectiveness is largely determined by the relative magnitude of
the transmission rates. If transmission rates between favorable
and unfavorable sites are intermediate or high, we have shown
that the levels of disease in sites that are less favorable for spread
are dominated by the disease pressure from the favorable sites
in the population (Fig. 3). Hence, the heterogeneity of the

population determines the underlying landscape within which
contacts between infected and susceptible sites, either favorable
or unfavorable, are subsequently dynamically generated by
the pathogen as it explores specific contacts preferentially. The
latter mainly is determined by the relative magnitude of the
transmission rates. Knowledge of multiple transmission rates as
estimated in this article therefore is essential in addressing
epidemiologically important issues such as the minimum spatial
coverage of a vaccination treatment required to reduce the risk
of invasion (23) or whether or not a susceptible crop or cropping
system (e.g., organic farms) can be introduced without enhanc-
ing the risk of invasive spread at the regional scale (10). These
questions can be addressed only within spatial models. Our
method ensures that answers to such questions are statistically
sound and fully integrated with experimental trials or field data.

Methods
Model Structure. The model of Gibson et al. (2) can be readily generalized to
represent a mixed-species population. The heterogeneity of the population is
described by assigning the covariate hj to each member j of the population,
where hj takes the values 0, 1 for favorable or unfavorable sites for disease
transmission. Let Ij(t) � 1 if j is infected by time t and 0 if still susceptible. In
common with most stochastic epidemiological models (1, 35, 36), we assume
that Pr(Is(t � dt) � 1I s(t) � 0) � �s(t)dt as dt 3 0, where �s(t) is the rate of
infection of s. In the specific model used here, �s(t) is composed of terms
representing the rate of primary infection from inoculum at time t if s is
inoculated, denoted �[hs](t), and the rate of secondary infection from each
infected neighbor i, denoted �[hi, hs](t). We restrict the transmission of
primary and secondary infection to nearest-neighboring sites only to accom-
modate the limited dispersal commonly found for soil-borne pathogens and
for which data for model testing were available. A nuisance parameter,
termed the rate of tertiary infection, �[hs](t), is introduced to allow for a small
proportion of non-nearest-neighbor transmission. Using the indicator func-
tion 1{A} � 1 if A is true and 0 otherwise, this can be written:

�s�t� � ��hs��t�1	s � X


� ��
i

��hi, hs��t�1	Ii�t� � 1
1	i � Ns
� � ��hs��t�,

where X and Ns are the sets of inoculated hosts and nearest neighbors of s,
respectively. The total rate of infection �s(t) of a host s therefore depends on
the time-varying transmission rates as well as on localized conditions (pres-
ence of inoculum, neighboring infectious hosts), which evolve with time and
are different for each host (Fig. 1). A range of functional forms were tested for
the transmission rates with the following emerging with strong support from
the DIC (see below):

��hs��t� � a�hs�exp� � r�hs� t� ,

��hi, hs��t�

� b�hi, hs���hi, hs���t/	�hi, hs��
��hi,hs�exp	�� t /	�hi, hs��

��hi, hs�
 / t ,

��hs��t� � 
�hs�,

in which the rate for primary infection decays exponentially with time, the
rate for secondary infection changes nonmonotonically in accordance with a
Weibull function, and the rate for background infection is constant. The
Weibull function is selected here as a function allowing the expression of
rise-and-fall dynamics with analytical integrals.

Bayesian Model Fitting. We fitted the model using Markov chain Monte Carlo
techniques and data augmentation to draw a sample from the joint posterior
distribution of model parameters and unobserved infection times and sources
of infection for each of the �10,000 hosts in the system. The algorithm is quite
involved, so details are provided in SI Appendix. The DIC (37, 38) was used to
discriminate between competing models.

Experimental Data. Our methods are applied to epidemics in heterogeneous
plant populations in replicated microcosm experiments. Details of the exper-
iments can be found in Otten et al. (39). In summary, dynamics of damping-off
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epidemics were recorded in populations comprising 414 seedlings of a favor-
able (radish, Raphanus sativus L., Cherry Belle) or an unfavorable (mustard,
Sinapis alba L.) species planted in a square lattice. At the densities used, spread
of disease occurs predominantly between nearest neighbors. Populations
comprised either 100% favorable, 100% unfavorable, a mixture with 75%
favorable and 25% unfavorable, or a 50:50% mixture, with up to six replicates
per treatment. The host species at each point on the lattice was randomly
selected, and in each tray, 32 randomly selected plants were challenged by
inoculum of the soil-borne fungal pathogen R. solani. The position of
damped-off plants was recorded daily for 13 days after emergence; to assess

the dependency of the method on high-resolution temporal data, we also
consider a censoring of the data with observations at 4-day intervals only. The
model was fitted to all replicates jointly.
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